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Abstract

Emerging streaming Internet of Things (IoT) applications re-
quire real-time response through edge computing providers.
However, these edge providers are outside of the trust do-
main of applications and may act maliciously. Existing meth-
ods to reach agreement across untrusted parties are infeasi-
ble for real-time applications. To this end, we propose the
notion of proximal consensus, where nodes agree on the
state of batched streaming computations even if they are not
identical. Specifically, proximal consensus uses the (partial)
computation of replicas and analyzes the statistical prop-
erties of these results to find an outcome in real-time and
with dynamically estimated confidence levels. Central to this
work is tackling the complications arising from tolerating
the presence of network conditions and Byzantine failures.
We explore the benefits of proximal consensus in Centauri,
a framework for responsive, fault-tolerant data pipelines.

Keywords: distributed systems, consensus, fault tolerance,
streaming, data pipelines

1 Introduction

Many large-scale distributed systems receive inputs from
and send results to devices at the edge. At the edge, network
reliability and node security is far more variable than in the
data center, especially for system components with limited
resources and connectivity such as sensor networks and
IoT devices. One of the primary challenges to building reli-
able distributed applications in these scenarios is the conflict
between fault tolerance and responsiveness. Replicating com-
ponents helps systems tolerate a bounded number of faults,
but ensuring replicas remain consistent often comes at the
price of responsiveness due to the additional communication
required by consensus protocols.

Systems designers frequently decide that responsiveness
is more important than consistency, and settle for weak guar-
antees such as eventual consistency [1, 3, 6, 8, 12, 18, 20, 23].
These eventually-consistent systems often focus on the prob-
lem of data storage and indexing, but do not provide solutions
for higher-level processing abstractions that are needed for
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streaming-based computations across edge nodes. More im-
portantly, eventual consistency is inappropriate for security-
critical or safety-critical applications where even temporarily
inconsistent data could significantly compromise the func-
tionality of the system.

For example, consider the route-planning application for
emergency responders illustrated in Figure 1 that continually
updates the fastest route to a target destination based on real-
time traffic data. Timely, accurate route recommendations
are critical, so the application replicates its components to
tolerate faults and ensure availability.

When traffic patterns change frequently, the longer it
takes for the system to process traffic data the less useful
the results may be. For example, the system may choose a
route where an accident has just occurred or avoid a clear
route which was until recently jammed. Worse, malicious
replicas may manipulate traffic data for their own purposes
such as steering traffic to (or away from) particular locations
or routes. If the application were built using a system that
only offers eventual consistency, routing decisions could be
based on inconsistent—and perhaps malicious—traffic data.
However, building on traditional fault-tolerant consensus
protocols such as Paxos or PBFT could result in a signifi-
cantly less responsive system, undermining the application’s
usefulness.

One way of analyzing the conflict between responsiveness
and consistency, as shown in Figure 1, is through the lens
of fault detection. Consider an honest node which receives
a travel time estimate from three replicas for Route A, as
well as a travel time estimate from three other replicas for
Route B. The node must choose which route to recommend
before time ¢, otherwise the responder may not receive the
recommended route in time to take it.

Now suppose that just before time t, only two (of three)
estimates for Route A have arrived, but the estimates do not
match. Furthermore, suppose that at most one of the three
replicas could be faulty, so one of the estimates we received
came from an honest node. Unfortunately, we cannot de-
termine which one! The missing estimate could be from a
faulty or honest node: the node may have crashed or the
message may not have been delivered because of a network
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Figure 1. Route recommendation based on the proximal con-
sensus outputs from two replica sets. Byzantine nodes in each
replica set could attempt to influence the route choice using
extremal values. By excluding outliers from the quorum, the
dispatcher node makes more reliable recommendations.

outage. Furthermore, the two estimates we received could
both be from honest nodes even though they differ: they
may have been forced to use incomplete traffic data in their
calculations if some sensor readings did not arrive in time.

An eventually consistent system might use the estimates
anyway, perhaps “merging” the conflicting estimates by tak-
ing their average. Once the missing estimate arrives and the
inconsistencies between the other estimates are resolved, the
node will eventually produce a high-quality recommenda-
tion. Until then, however, it’s unclear how reliable the node’s
recommendation is, or whether it should be used to make a
safety-critical decision.

A traditional fault-tolerant system might not proceed until
a sufficient number of messages are delivered to reach a ma-
jority consensus on the estimate. If a consensus is not reached
within the allotted time, it could render the recommendation
moot. Furthermore, traditional fault-tolerant systems cannot
take advantage of workflows where approximate results are
adequate for progress. Since a consensus cannot be reached
unless a majority of replicas produce matching results, each
honest replica must wait until all traffic data has been re-
ceived before calculating their estimate to ensure it matches
the estimates of other honest replicas.

This paper introduces proximal consensus, a new approach
to building responsive, fault-tolerant consensus protocols for
data-driven streaming applications with little-to-no coordi-
nation. Proximal consensus relies on conditional probability
distributions that help diminish the impact extremal values
(statistically unlikely outputs) have on the quorum’s output.
Furthermore, these distributions help indicate to clients the
level of confidence they should place in the output. A high-
confidence (high conditional probability) output indicates
the output is likely to have come from honest (or honest-
acting) replicas. Low confidence indicates that unexpected
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behavior occurred, either due to network delays or malicious
replicas. To our knowledge, proximal consensus is the first
consensus protocol to offer responsive, approximate outputs
on streaming data without coordination.

Delivering outputs reliably, even when they have low con-
fidence, allows applications to make domain-specific deci-
sions when anomalous events occur. In our route-planning
application, for example, the dispatcher node could choose to
recommend routes based on older route estimates rather than
update its recommendation based on new, low-confidence
estimates.

In the remainder of this paper, we describe the core ideas
behind proximal consensus (§2) and present Centauri, a sys-
tem designed to use proximal consensus for responsive, fault-
tolerant streaming applications (§3). We discuss proximal
consensus in the context of related work (§4), and finally we
discuss limitations and open questions (§5).

2 Proximal Consensus

What sets proximal consensus apart from other consensus
protocols is that it does not rely on exact state machine
replication. Instead, each host uses conditional probability
distributions to determine the most likely result given the
messages received before the deadline. The distributions are
inferred from continuous, online empirical measurements
by a trusted monitor and distributed asynchronously. This
approach is attractive for our setting since it exhibits a kind
of graceful degradation as faults accumulate or network con-
ditions deteriorate. For example, whereas a BFT protocol
during a network partition might be unable to reach con-
sensus (possibly leading to a view change to select a new
leader), a proximal consensus protocol could continue to
make progress with the data available with reduced confi-
dence in the results.

Honest nodes may be forced to produce outputs based on a
subset of the data they expected to receive. Since significant
network partitions are statistically unlikely in most systems,
the smaller such a subset is, the less likely it will occur under
benign conditions. Thus we can recognize extremal outputs
based on their likelihood given probability distributions on
the network latency and input values. There is no magic here
though; just as BFT nodes often cannot distinguish between
a faulty host and a network partition when an expected mes-
sage is missing, proximal consensus nodes cannot always
attribute the cause of an extremal output when one occurs.
Instead, the key idea is that enabling the recognition of ex-
tremal outputs allows us to exclude them if a quorum of
non-extremal outputs is available.

To explain proximal consensus in more detail, consider
a simple coin flip application, illustrated in Figure 2, that
counts the number of tails that have occurred. The result
of each coin flip is sent to a replica set, which increments
a counter for each tail. By using three replicas, the system
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Figure 2. A set of h = 2 and f = 1 replicas that report the
number of received tails (coin flip) at time ¢. The middle
replica receives the second tails after its deadline to output.
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designer hopes to be able to tolerate a crash or compromise
of at most one of the nodes.

The top and bottom replicas receive two messages before
the deadline, but the second message to the middle replica is
delayed. Because each replica must produce a result before
the deadline, the top replica sends 2T, but the middle replica
sends 1T since it has only seen one tail result. The bottom
node is Byzantine and sends T even though it has seen both
messages. In order to determine the most likely output given
these messages, the client must use a priori knowledge about
how honest replicas behave and the probability distributions
of system events.

2.1 System model

We assume that data streams flow from sources to clients
in an acyclic dataflow graph. Edges in the dataflow graph
represent network connections between source, replicas, or
clients. Replicas, the interior nodes in the graph, perform
computations on the streams of data they receive and pro-
duce an output stream for downstream consumers. Replica
sets perform identical computations on the same streams,
and send outputs to the same consumers. Each replica set is
configured with a parameter f, which specifies the (assumed)
maximum number of Byzantine faults tolerated by that set.
For a replica set of size n configured to tolerate f faults, we
assume at least h = n — f replicas in the set are honest.
Clients and replicas have functions that encode the distri-
butions of (the next element of) each input stream and the
expected network latency of each connection. For example,
the replicas in Figure 2 might have a uniform distribution
P(H) = %;P(T) = % for each coin flip, and an exponential
distribution with arrival rate A = 20ms for the network delay.

2.2 Consensus as probability maximization

The goal of the client in Figure 2 is to determine the most
likely number of tails based on its observations. As with tra-
ditional consensus protocols, proximal consensus attempts

to form a quorum from a subset of replicas. Rather than find-
ing a quorum of matching messages, however, the goal is to
find the subset most likely to have been produced by honest
replicas. In this way, elements from multiple replica streams
can be used to construct a logical stream that is tolerant of
Byzantine faults and network delays.

As a first step, consider the unconditional probability at
the client of receiving 2T, assuming that the top replica is
honest. An honest replica will only report 2T if it observes
two T messages from the source. Therefore, we need the
joint probability of two tail flips and two delivered messages.
Let R; and R, be random variables for the time the first and
second messages arrive at the replica. The probability of two
tail flips is P(TT) = % . % The probability of two delivered
messages is the joint probability P(R; < t)-P(R; < t) where
t is the deadline, giving us the joint probability % -P(R; <
t)-P(Ry <'t).

Now consider receiving 1T from an honest node. Here
there are several scenarios. We could have TH or HT, or we
could have TT and one of the messages fails to arrive in time:

P(1T) =P(TH) - P(Ry < t) + P(HT) - P(Ry, < t)
+P(TT) - (P(R; > t) + P(R; > 1))

Finally, for receiving @T from an honest node we have

P(@T) = P(HH) + P(TH) - P(Ry > t) + P(HT) - P(R; > t)
+P(TT) - P(Ry > t) - P(Ry > 1)

Formally, let X be a random variable representing the
next element in the logical stream, and Ny, N2, N5 be ran-
dom variables representing messages received from the top,
middle, and bottom nodes, respectively. Let g be a subset of
size n — f = 2 of the observed events Q = {N; = 2T,N; =
1T, N3 = 0T}. The client’s task is to find a pair (x, g) such
that the conditional probability P(X = x | ¢) is maximized:

Definition 2.1 (Proximal consensus of X given Q).

PC(X;Q) = argmax P(X =x]q)
x5 qe[Q]"S

In other words, find the most likely output over all valid
quorums of size n — f = 2.

A key idea of our approach is that since all replicas are
expected to send outputs by a pre-set deadline, clients (or
downstream replicas) can “observe” when a message is not
received by the expected time. Suppose that the output 1T
from the middle replica in Figure 2 failed to arrive at the
client by the expected time. Here, the observed events would
instead be N; = 2T, N, = R, > t, N3 = 0T. The client did not
observe a message from the middle replica (N3), but it did
observe that the arrival time of any such message will be
greater than the deadline t.
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Figure 3. Centauri architecture. Solid arrows represent the
receiving node asynchronously processes received data on
streams. Dotted arrow signify data is processed and trans-
mitted in best effort.

3 Centauri Architecture
3.1 System Model

Figure 3 shows the five components of Centauri, a framework
for responsive data streams that uses proximal consensus:

e Data sources (e.g., stationary and mobile IoT devices),
which produce and stream data to an endpoint.

e Replicas, untrusted servers that process and store
data from subscribed streams. Replicas run computa-
tions on data and stream results to specified endpoints.

e Replica Set, a set of h + f replicas subscribed to the
same set of endpoints, where h and f is the assumed
number of honest and Byzantine replicas. Each replica
in a replica set runs the same time-window computa-
tion at a predetermined interval and asynchronously
processes received data.

e Monitor, collects insights on all data streams, com-
putes statistical distributions on the data, and provides
distributions to replicas and clients in best effort. The
distributions enable clients to produce confidence lev-
els on results produced from proximal consensus.

o Clients, end-users that issue requests on data and
subscribe to sets of endpoints. They have limited com-
puting resources and interact with the system using
an application on a limited resource device such as a
cellphone or laptop.

The monitor provided distributions enables a node to run
proximal consensus. Specifically, the distributions enable
the client to take a set of inputs (replica computations on
data) and the amount of assumed Byzantine replicas (f), and
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Figure 4. The flow of untrusted data streams from a replica
set to a client, who uses the (potentially) partial results to
infer a single value.

output a statistically likely result, along with an associated
confidence. The result and confidence level is then streamed
into the application as a trusted input. The proximal consen-
sus process is shown in Figure 4.

3.2 Message Types

Proximal consensus contains four types of messages: request,
stream, sample, and distribution.

Request messages are sent from clients to replicas and
replicas to replicas. The messages are used to set up a set
of replica streams of some continuous computation on data
over a defined period. Request messages appear as such:
(type = request, id, req, v, ttl, r),, where:

e id, the identifier of the requesting node.

e req, the request.

e o, the validity of data items for each computation sat-
isfying the predicate: src_time > now() — v.

e tt], how long to run the continuous query.

e r, the rate at which to produce updates (e.g. every four
seconds).

e 0, the sender’s signature.

Stream messages are received by nodes subscribed to
endpoints and are sent from data sources and replicas. This
is commonly from data sources to replicas, and replicas to
clients. Stream messages are in the form:

(type = stream, id, s;q, ts, n, D)5, where:
e id, the identifier of the sending node.
e s;4, the stream id.
e n, the monotonically increasing nonce of the message
on sig
o ts, the source timestamp of the message.
e D, the produced data at time ts.
e 0, the sender’s signature.

Sample messages provide the monitor with empirical
data to infer probability distributions. There are two sub
types of sample messages. The first sub type, o, is from data
sources and replicas and contain output values (raw data
or computations on data). The second sub type n is from
replicas and clients and contain network latencies measured
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by the difference between the source timestamps and the
time the message was received. Sample messages are in the
form:

(type = sampleg)n, d, D, ts),, where:

e o|n, specifies the sub type.

e d, the identifier of the distribution associated with the
data.

e D, the data. For type o samples, this is the output value.
For type n samples, this is a network latency.

o ts, the timestamp of the sample message.

o o, the sender’s signature.

Distribution messages are sent to replicas and clients
containing the distributions on the data of interest. Distribu-
tion messages are in the form:

(type = distribution, d, A, ts),, where:

e d, the identifier of the distribution.

e A, a vector containing the distribution type and its
parameters.

o ts, the timestamp of the message.

e 0, the sender’s signature.

4 Related Work

To the best of our knowledge, proximal consensus is the first
consensus protocol to form quorums with partial replica state
and no replica synchronization. By learning the context of
the data, proximal consensus can produce distributions and
analyze data in real-time. Traditional Byzantine agreement
protocols, such as PBFT [9] and Paxos [19] are general con-
sensus solutions, where data is processed in total order and
accepted only if a quorum of replicas produce matching re-
sults. Zyzzyva [16], HotStuff [29], BFT-SMART [7], to list a
few, offer optimizations to PBFT and Paxos by optimizing
the process of totally ordering messages (i.e. state machine
replication). Although these protocols do not need to reason
about the data (why they are general), generality comes with
unnecessary overhead.

Gupta et al. [15] and Kardam [11] propose solutions to
be robust against Byzantine agents in distributed stochastic
gradient descent (D-SGD) As far as we know, the only body
of work that is similar to us is in Byzantine machine learning.

Much of the previous work in streaming systems offer
trade offs of availability for consistency or other eventually
consistent guarantees, which makes it impossible to estimate
the accuracy of the produced result. For example, Aurora [2]
provided a stream-oriented solution for monitoring continu-
ous window queries with asynchronous message arrival, but
computations on data is trusted and offers no fault-tolerance.
Borealis [1] extends Aurora and offers a method for fault-
tolerance through a dynamic revision of query results for
delayed data items by offering eventually consistent guar-
antees; however, it is impossible to predict the skew of the

initial computation. Balazinska et al. [5] and CEDR [6] pro-
vide eventually consistent guarantees; however, it is impos-
sible to determine how inaccurate the results are, which are
also issues with Apache Storm at Twitter [26] and Twitter
Heron [17] (extending Storm). Rhino [13] fails to support
out-of-order (asynchronous) data processing as records are
assumed to be timestamped with a monotonically increasing
logical timestamp, which is against our desire for respon-
siveness. Apache Spark Streaming [30] relies on checkpoints
to ensure consistency and fault-tolerance if a working node
fails, but the solution requires the use of extra resources.
Macrobase [4] is a data analytics engine that uses machine
learning to explain fast data volumes to users, but does not
offer fault-tolerance or mitigation against malicious data
inputs.

5 Discussion

Proximal consensus is a protocol designed to maintain re-
sponsiveness even when a quorum fails to form on matching
responses. Current consensus protocols may choose to syn-
chronize replica state or attempt a view change to replace
a faulty primary, but synchronization causes the system to
block until replicas finish synchronizing state. Alternatively,
proximal consensus aims at responsively outputting replica
computations even if replicas produce non-matching out-
puts. Using the monitor-provided distributions, the client
can identify the n — f most statistically likely replica out-
puts and infer the most statistically correct answer given
the observed outputs, along with computing the confidence
level of the final result. Reducing the impact f of the most
outlying responses have on the final result enables proximal
consensus to limit the impact Byzantine responses may have
on the final result.

This paper has given an overview of proximal consensus
and the challenges of maintaining responsiveness in quorum-
based systems when replicas produce inconsistent results.
We find that the accuracy of the monitor-produced distri-
butions is essential to identify honest replicas and produce
high-confidence results correctly. While there are some ap-
proaches to estimate a distribution on a set of inputs, such as
Maximum Likelihood Estimation [21] or The Bayesian Way
[22], there are exciting opportunities to robustifying these
estimation techniques. Robustifying estimations is essential
for the monitor to produce distributions where some inputs
may be from malicious replicas [24, 27, 28]. Techniques in
Federated Learning, and more recently, Cluster Federated
Learning, are interesting mechanisms to explore in building
Byzantine-robust learning models [14, 25]. Moreover, robust
Bayesian networks [10] can also play a suitable role in us-
ing conditional probability to determine the likelihood of
an event occurring given a set of (partial) observed events
with the presence of Byzantine adversaries. We see the afore-
mentioned techniques as methods for the monitor to build



distributions capable of accurately detecting anomalies (low
probability events) on partial state while also minimizing
the adverse impact of Byzantine adversaries.

Responsive-minded systems that run continuous queries
on stable data streams with a known statistical distribution
are strong candidates to leverage proximal consensus. Sys-
tems with non-stable data flows containing no known statis-
tical distribution are more challenging to support because of
the difficulty of using conditional probability to identify the
possibly malicious replica.
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